Limit this search to....

Generalized Thermodynamics: The Thermodynamics of Irreversible Processes and Generalized Hydrodynamics 2002 Edition
Contributor(s): Byung Chan Eu (Author)
ISBN: 1402007884     ISBN-13: 9781402007880
Publisher: Springer
OUR PRICE:   $161.49  
Product Type: Hardcover - Other Formats
Published: July 2002
Qty:
Annotation: This monograph presents, from the viewpoint of continuum mechanics, a newly emerging field of irreversible thermodynamics, in which linear irreversible thermodynamics are extended to the nonlinear regime and macroscopic phenomena far removed from equilibrium are studied in a manner consistent with the laws of thermodynamics. The tool to develop this thermodynamic theory of irreversible processes are the generalized thermodynamics, which also extends the classical hydrodynamics of Navier, Stokes and Fourier to nonlinear irreversible processes. On the basis of mathematically rigorous representations of the first and the second law of thermodynamics, phenomenological theory (continuum mechanics) deductions are made from the thermodynamic laws of R. Clausius and Lord Kelvin and by this continuum mechanics theories are formulated for macroscopic irreversible processes occurring far removed from equilibrium. Non-equilibrium thermodynamics are developed for thermodynamic functions.

The macroscopic irreversible processes studied include global irreversible processes as well as local hydrodynamic processes at an arbitrary degree of removal from equilibrium. Applications of the theories cover global irreversible processes, simple flows of non-Newtonian and non-Fourier fluids, shock waves of monatomic and diatomic gases, rarefied gas dynamics, ultrasonic wave absorption and dispersion of monatomic and diatomic gases, electrochemical processes, neural networks of chemical reactors, microflows, etc. Variational principles in irreversible thermodynamics and contact manifolds in thermodynamics are also discussed.'

This monograph, will be of interest to condensed matter physicists, chemicalphysicists, biophysicists, mechanical and aerospace engineers, and specialists and graduate students in the fields of irreversible thermodynamics and non-equilibrium statistical mechanics.

Additional Information
BISAC Categories:
- Science | Mechanics - Thermodynamics
- Science | Physics - Condensed Matter
- Science | Chemistry - Physical & Theoretical
Dewey: 536.7
LCCN: 2002031637
Series: Fundamental Theories of Physics
Physical Information: 1" H x 6.6" W x 9.74" (1.57 lbs) 344 pages
 
Descriptions, Reviews, Etc.
Publisher Description:
Despite a long history of almost 180 years stretching back to the times of Carnot and, later, Clausius and Lord Kelvin, amongst others following him, the subject of thermodynamics has not as yet seen its full maturity, in the sense that the theory of irreversible processes has remained incomplete. The works of L. Onsager, J. Meixner, I. Prigogine on the thermodyn- ics of linear irreversible processes are, in effect, the early efforts toward the desired goal of giving an adequate description of irreversible processes, but their theory is confined to near-equilibrium phenomena. The works in recent years by various research workers on the extension of the aforem- tioned thermodynamic theory of linear irreversible processes are further efforts toward the goal mentioned. The present work is another of such efforts and a contribution to the subject of generalizing the thermodyn- ics of reversible processes, namely, equilibrium thermodynamics, to that of irreversible processes-non-equilibrium thermodynamics, without being restricted to linear irreversible processes. In this context the terms 'far - moved from equilibrium' is often used in the literature, and such states of macroscopic systems and non-linear irreversible phenomena in them are the objects of interest in this work. The thermodynamics of processes, either reversible or irreversible, is a continuum mechanical theory of matter and energy and their exchange between different parts of the system, and as such it makes no direct r- erence to the molecules constituting the substance under consideration.