Limit this search to....

Hamiltonian Chaos and Fractional Dynamics
Contributor(s): Zaslavsky, George M. (Author)
ISBN: 0198526040     ISBN-13: 9780198526049
Publisher: Oxford University Press, USA
OUR PRICE:   $166.25  
Product Type: Hardcover - Other Formats
Published: February 2005
Qty:
Annotation: The dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic
and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the
discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics. The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of
particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image of the origin of dynamical chaos and randomness. An understanding of the origin of the randomness in dynamical systems, which cannot be of the same origin
as chaos, provides new insights in the diverse fields of physics, biology, chemistry and engineering.
Additional Information
BISAC Categories:
- Science | Chaotic Behavior In Systems
Dewey: 530.154
LCCN: 2004018403
Physical Information: 1.08" H x 6.4" W x 9.48" (1.94 lbs) 436 pages
 
Descriptions, Reviews, Etc.
Publisher Description:
The dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic
and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the
discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics. The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of
particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image of the origin of dynamical chaos and randomness. An understanding of the origin of the randomness in dynamical systems, which cannot be of the same origin
as chaos, provides new insights in the diverse fields of physics, biology, chemistry and engineering.